
Model-based Testing of Automotive Systems

Eckard Bringmann, Andreas Krämer

PikeTec GmbH, Germany

Eckard.Bringmann@PikeTec.com, Andreas.Kraemer@PikeTec.com

Abstract

In recent years the development of automotive

embedded devices has changed from an electrical and

mechanical engineering discipline to a combination of

software and electrical/mechanical engineering. The

effects of this change on development processes,

methods, and tools as well as on required engineering

skills were very significant and are still ongoing today.

At present there is a new trend in the automotive

industry towards model-based development. Software

components are no longer handwritten in C or

Assembler code but modeled with

MATLAB/Simulink™, Statemate, or similar tools.

However, quality assurance of model-based

developments, especially testing, is still poorly

supported. Many development projects require

creation of expensive proprietary testing solutions.

In this paper we discuss the characteristics of

automotive model-based development processes, the

consequences for test development and the need to

reconsider testing procedures in practice.

Furthermore, we introduce the test tool “TPT” which

masters the complexity of model-based testing in the

automotive domain. To illustrate this statement we

present a small automotive case study.

TPT is based on graphical test models that are not

only easy to understand but also powerful enough to

express very complex, fully automated closed loop tests

in real-time. TPT has been initially developed by

Daimler Software Technology Research. It is already

in use in many production-vehicle development

projects at car manufacturers and suppliers.

1. Motivation

Within only a few years the share of software

controlled innovations in the automotive industry has

increased from 20 percent to 80 percent, and is still

growing. Forecasts claim that software will determine

more than 90% of the functionality of automotive

systems within the next decade. Consequently the

impact of software on the customer and hence on

market shares and competition will be enormous. This

establishes software as a key technology in the

automotive domain.

During recent years the growth of software in the

automotive industry led to a development process

founded on model based technologies which have

many advantages for automotive developments. Firstly

model-based technologies such as MATLAB/Simulink,

Statemate, MatrixX, or LabView are domain specific

and support powerful mechanisms for handling and

processing continuous signals and events which are the

most important data types in the automotive domain.

These model-based technologies allow the

development of high-level models that can be used for

simulation in very early stages of the development

process. This in turn is important since automotive

development is an interdisciplinary business with

software, electrical, and mechanical engineering

aspects inextricably entwined. Graphical models and

simulation of such models allows engineers to find a

common functional understanding early in the design

phase. So, model-based development improves

communication within development teams, with

customers, or between car manufacturers and suppliers.

It reduces time to market through component re-use

and reduces costs by validating systems and software

designs up front prior to implementation. Consequently

models are often treated as part of the requirements

specification, since the models illustrate the required

functionality in an executable manner. Model-based

development provides a development process from

requirements to code, ensuring that the implemented

systems are complete and behave as expected. Model-

based development allows segregation of concerns;

technical aspects such as fixed-point scaling (i.e. the

transformation of floating-point algorithms to fixed-

point computations), calibration data management, and

the representation of signals in memory are separated

from the core algorithms thereby keeping the models as

lean as possible.

2. Model-based testing in practice

Along with the growing functionality and the

introduction of model-based development processes,

the demands on quality assurance have also increased.

In terms of testing, model-based development enables

system engineers to test the system in a virtual

environment when they are inexpensive to fix, i.e.

before the code is actually implemented or integrated

on the final hardware (which is called ECU or

electronic control unit). However, in practice there are

just a few testing procedures that address the

automotive domain-specific requirements of model-

based testing sufficiently. The applied test methods and

tools are often proprietary, ineffective and require

significant effort and money. About 15 years ago

testing embedded devices comprised primarily of four

well-understood areas: (1) electromagnetic

compatibility (EMC tests), (2) electrical tests (e.g.

short-circuit, creeping current, stress peaks), (3)

environmental tests (i.e. testing under extreme climate

conditions), and (4) field tests (on proving ground or

the road). There was no need for dedicated functional

testing methods because the functional complexity was

comparatively low. With the increasing popularity of

model-based development the engineering discipline of

automotive model-based testing has been neglected for

a long time. With the promise of model-based

development to prove concepts at early development

stages by means of executable models it was assumed

that testing those models and the derived code is less

important and therefore would not require new

techniques.

3. Requirements for automotive MBT

The term ‘model-based testing’ is widely used today

with slightly different meanings. In the automotive

industry it is normally used to describe all testing

activities in the context of model-based development

projects.

Automotive model-based development has specific

characteristics that require the use of dedicated model-

based testing approaches. The characteristics of, and

the resulting requirements for model-based testing are

discussed below.

3.1 Test automation

Automotive systems usually interact with a real-

world environment which is under continual control of

the embedded system. Thus the whole system is not

only a piece of software, but a complex construction

that consists of software, hardware, electrical,

mechanical, and/or hydraulic parts. The development

of such a system requires the co-design of software and

hardware components. Consequently an iterative

process is needed with a considerable number of

interim releases of the integrated system. Thoroughly

testing these interim releases is crucial to ensure that

requirements inconsistencies and design or

implementation faults can be uncovered as early as

possible. This means that the same tests have to be

repeated again and again over the development cycle.

Test automation is therefore essential as the manual test

workload over many iterations would be at best

expensive and likely not practical, leading to less than

thorough quality assurance standards.

Test automation also simplifies the coordination

between car manufacturers and suppliers during

development. Every ECU sample delivered by the

supplier during development must fulfill at least a

predefined acceptance test before being integrated in a

new car setup. Finally, testing automotive systems

often requires test scenarios with a very precise

sequence of time-sensitive actions, especially for

power-train and chassis systems (in the range of µ-sec).

The only way to execute such scenarios is automation.

3.2 Portability between integration levels

One major benefit of model-based development is

the possibility to “do things as early as possible”. In

terms of testing this means to test the functionality in

the model before the software is implemented and

integrated into the final ECU. Between the initial

modeling and the integration into the ECU there are

intermediate integration levels described below. Since

the functionality of the system should remain constant

and independent of the integration level, relevant test

cases should also be constant throughout the

integration and implementation.

In order to maximize reuse, a test procedure for

model-based developments should support the

portability or reuse of test cases between the various

platforms. On the one hand this reduces the effort of

test case design tremendously and, on the other hand,

allows for easy comparison of test results between the

different integration levels which may be tested on

different systems. In addition sharing test cases

between different levels also means that test cases can

be expressed in a common notation. Test cases can be

corrected or extended in a central test model without

the need to adjust a lot of different test

implementations for the different integration levels.

Although this requirement sounds trivial from a

theoretical point of view it is a weak point in today’s

testing practice for model-based development because

test procedures and test languages are usually

specialized for one particular test platform and are very

difficult to share with other test platforms.

In general, the following integration levels are

distinguished:

Model-in-the-Loop (MiL): The first integration level

is based on the model of the system itself. Testing an

embedded system on MiL level means that the model

and its environment are simulated (interpreted) in the

modeling framework without any physical hardware

components. This allows testing at early stages of the

development cycle. In most automotive model-based

development projects there are different kinds of

models. Functional models (aka physical models) are

rather abstract and do not consider all aspects such as

robustness and performance. In the course of the

development physical models are transformed into

implementation models. These models are designed to

meet the requirements from a software engineering

point of view. Aspects such as encapsulation,

abstraction, robustness, performance, fixed-point

scaling, and reuse are treated in implementation

models. Implementation models are often used together

with a code generator to automatically derive

production code from the system models.

Both physical and implementation models can be

tested. Physical models are tested on a system level

(system test). When testing implementation models for

complex systems it makes sense to distinguish between

module tests (testing subsystems of the model that

handle particular functional areas) and system tests.

Software-in-the-Loop (SiL): Testing an embedded

system on SiL level means that the embedded software

is tested within a simulated environment model but

without any hardware (i.e. no mechanical or hydraulic

components, no sensors, actuators). Usually the

embedded software and the simulated environment

model run on the same machine. Since the environment

is virtual, a real-time environment is not necessary.

Usually SiL tests are performed on Windows- or

Linux-based desktop machines.

Processor-in-the-Loop (PiL): Embedded controllers

are integrated in embedded devices with proprietary

hardware (ECU). Testing on PiL level is similar to SiL

tests, but the embedded software runs on a target board

with the target processor or on a target processor

emulator. Tests on PiL level are important because they

can reveal faults that are caused by the target compiler

or by the processor architecture. It is the last

integration level which allows debugging during tests

in a cheap and manageable way. Therefore the effort

spent by PiL testing is worthwhile in almost all cases.

Hardware-in-the-Loop (HiL): When testing the

embedded system on HiL level the software runs on the

final ECU. However the environment around the ECU

is still a simulated one. ECU and environment interact

via the digital and analog electrical connectors of the

ECU. The objective of testing on HiL level is to reveal

faults in the low-level services of the ECU and in the

I/O services. Additionally acceptance tests of

components delivered by the supplier are executed on

the HiL level because the component itself is the

integrated ECU. HiL testing requires real-time

behavior of the environment model to ensure that the

communication with the ECU is the same as in real

application.

Test rig: Testing in a test rig means that the

embedded software runs on the ECU. The environment

consists of physical components (electrical,

mechanical, or hydraulic). Furthermore, a test rig often

utilizes special equipment for measurements and other

analysis tools.

Car: The last integration level is obviously the car

itself. The final ECU runs in the real car which can

either be a sample or a car from the production line.

3.3 Systematic test case design

For many reasons automotive model-based

developments usually consist of complex functionality.

The systems interact with physical components that

have a complex behavior which depends on many

variables. Controlling such components also introduces

complex controller functionality. Secondly the

electrical, mechanical, and hydraulic components can

fail and the embedded system has to detect such

failures and compensate for them in a very robust way,

as far as technically possible. The implementation of

code to handle all such failure modes is a significant

portion of the system software.

Testing such complex systems requires an astute

selection of test cases to ensure that all test-relevant

aspects are covered while redundancies are avoided. A

test procedure must support this thorough selection

process by providing a means of keeping an overview

of the selected test cases, even when there are hundreds

or thousands of test cases.

3.4 Readability

Automotive model-based testing is a collaborative

work between testers, system engineers, and

programmers. All of these experts have different

perspectives on the system, different skills and

experiences, and provide important information for the

identification of suitable test cases: system engineers

know about the possible pitfalls of the application

domain, programmers know about the complexity of

algorithms and their risk of faults, and testers know

about coverage and combination issues, boundary tests,

robustness tests and others methods that have to be

considered in the test implementation.

The principle of model-based development is to use

models as a “common language” comprehensible to all

engineers involved in the development. Hence model-

based testing should be readable and comprehensible

by all of these experts too and not just by a few testing

specialists.

3.5 Reactive testing / Closed loop testing

When testing model-based developments, test cases

are often dependent on the system behavior. That is,

the execution of a test case depends on what the system

under test is doing while being tested. In this sense the

system under test and the test driver run in a closed

loop.

A simple example of a reactive test case for an

engine control is the following scenario: The test case

should simulate a sensor failure at the moment when

the revs per minute of the engine exceed a certain

critical value. In this case there is no fixed point in time

at which the system is known to exceed the critical rpm

value because this event is related to many parameters

through a complex relationship. To model the test case

in a natural way we must be able to express the

dependency from the system.

Existing testing approaches support such reactive

testing by means of scripting languages. Although these

languages are powerful enough for reactive tests they

are rather low-level concepts so that it is often difficult

to easily understand such test cases.

3.6 Real-time issues and continuous signals

As mentioned previously, testing on the HiL level or

on test rigs requires the environment and the test cases

to run in real-time. Conventional test approaches rarely

satisfy this requirement. Instead they run test scripts on

a non-real-time machine and interact with the system

under test without a precise timing environment.

However, real-time behavior is an important

requirement to guarantee reproducible test cases.

Without real-time there may be jitters in the

communication – especially between continuously

changing signals. Even slight deviations in the timing

behavior at the interfaces can have a huge impact on

the system behavior, with consequences for traceability

and reproducibility.

In addition, there are test cases where the timing

constraints are crucial for the systems functionality, for

example in engine controls. In such systems many tests

are impossible to perform without the real-time

certainty of the test behavior.

3.7 Testing with continuous signals

Automotive control systems have a fairly complex

functional behavior with complex interfaces and deal

with continuously changing signals as input and output

entities. Testing systems with continuous signals is

poorly supported by conventional test methods.

Existing methods are data-driven and have no means of

expressing continuous signals and continuous timing

issues. As a consequence of this methodical gap, the

test of automotive systems in practice focuses on

simple data tables to describe input signals or on script

languages, such as Visual Basic, Python or Perl, to

automate tests. Nevertheless, signals are still very

difficult to handle in these languages.

4. TPT for automotive model-based testing

All of the requirements mentioned above must be

considered when testing model-based developments in

the automotive domain. As mentioned previously, most

of the testing technologies lack support for the desired

features. This leads to development of many

proprietary testing solutions that focus on the testing

problems of individual model-based development

projects but do not address the overarching challenge.

Our new approach – which is called Time Partition

Testing (abbreviated as TPT) – has been specifically

designed to bridge this gap for model-based automotive

testing. The objective of TPT is

1. to support a test modeling technique that allows

the systematic selection of test cases,

2. to facilitate a precise, formal, portable, but simple

representation of test cases for model-based

automotive developments, and thereby

3. to provide an infrastructure for automated test

execution and automated test assessments even

for real-time environments. This is important for

hardware-in-the-loop tests, for example.

As a general design principle, TPT test cases are

independent of the underlying software architecture

and technology of the SUT and the test platform. This

enables test cases to be easily reused on different test

platforms, such as MiL, SiL or HiL environments. This

is not only a big step towards efficient testing, but also

supports the direct comparison of test results for a test

case that has been executed on multiple integration

levels (i.e., back-to-back testing).

The TPT test method is strongly associated with a

corresponding test language. An objective of the TPT

test method is to support the systematic selection of

relevant test cases. A language is therefore necessary to

describe these selected cases in a comprehensible

manner. The test language in turn affects the way test

cases are modeled, compared, and selected. Therefore

the language also affects the test method. Due to this

strong relationship between method and language we

will discuss both aspects in this section together.

The systematic, well-directed and well-considered

selection of test cases is crucial for improving the test

efficiency. Redundancies and missing test relevant

scenarios can only be identified by viewing the set of

test cases as a whole. Consequently a test method and a

test language must always answer two questions:

1. How can a single test case be described using the

test language?

2. How does the test method support the selection of

the whole set of test cases for a SUT? In other

words, how does it contribute to the avoidance of

redundancies between test cases and to the

identification of missing test cases?

Amazingly existing test approaches that support

automated tests usually avoid the second question and

only provide sophisticated languages which allow the

definition of complex, fully automated test scenarios.

TPT tries to go one step further. TPT provides a

language for modeling executable tests for automotive

systems together with a systematic test case selection

procedure embedded into the test modeling concept.

5. Test process using TPT

The unique feature of the Time Partition Testing is

the way test cases for continuous behavior are modeled

and systematically selected during the test case design

activity. Nonetheless, TPT goes far beyond this

activity. The overall testing process of TPT is defined

as presented in Figure 1 and explained in the following.

Test Case

Design

Compilation

Test

Execution

Test

Assessment

Report

Generation

Require-

ments

Test

Report

platform independent

platform dependent

Tester

Figure 1: TPT test process

5.1 Test case design

During test case design, test cases are selected and

modeled by means of the graphical test modeling

language described in the next section. The basis of this

test case design is the functional system requirements.

So tests modeled with TPT are black-box tests.

5.2 Compiling

Test cases are compiled into highly compacted byte

code representations that can be executed by a

dedicated virtual machine, called the TPT-VM. The

byte code has been specifically designed for TPT and

contains exactly the set of operations, data types, and

structures that are required to automate TPT tests. This

concept ensures that test cases as well as the TPT-VM

have a very small footprint. This is important in test

environments with limited memory and CPU resources,

such as PiL and HiL.

Additionally all assessment properties that describe

the expected results of the SUT are compiled into

integrated assessment scripts. For each test case there is

one byte code representation and one assessment script.

5.3 Test execution

During test execution the virtual machine (TPT-

VM) executes the byte code of the test cases. The TPT

VM communicates continually with the SUT via

platform adapters. The platform adapter is also

responsible for recording all signals during the test run.

Due to the clear separation between test modeling and

test execution, tests can run on different platforms such

as MiL, SiL, PiL, and HiL environments. HiL

environments (which usually run in real-time) can be

automated with TPT tests because the TPT-VM is able

to run in real-time too. The clear and abstract semantic

model of TPT test cases allows the test execution on

almost every test environment provided that a

corresponding platform adapter exists.

5.4 Test assessment

The recorded test data is initially just raw signal

data without any evaluation of whether the behavior of

the SUT was as expected or not. This data is then

automatically assessed by means of the compiled

assessment scripts. Since test assessments are

performed off-line, real-time constraints are irrelevant.

Currently TPT uses Python as the script language so

that an existing Python interpreter can be used as the

runtime engine. A powerful library has been provided

to simplify signal handling, signal observation and

signal manipulation. However, TPT does not rely on

the actual scripting language or on the interpreter.

5.5 Report generation

A report is generated from the results of the test

assessment. It depicts the result of the test case in a

human-readable format. For this purpose the report

contains the test result (with one of the verdicts

passed/success, failed, or unknown), curves of relevant

signals, data tables as well as customizable comments

that illustrate the evaluated results.

TPT supports all major test activities and automates

as many of these steps as possible. Other activities such

as test management, test coverage measurement, data

logging, diagnosis handling and others are not covered

by TPT. However, integration with many of-the-shelf

management tools such as HP Quality Center,

Telelogic Doors do exist or are currently under

development.

6. Case study explaining TPT

The TPT test language is best explained by means

of a case study which is a simplified version of an

exterior headlight controller (EHLC) of an existing

production-vehicle ECU.

An outline of the specification can be stated as

follows:

[#1] There is a switch with three states: ON, OFF,

and AUTO.

[#2] When switch == ON the headlights shall be

turned on.

[#3] When switch == OFF the headlights shall be

turned off.

[#4] When switch == AUTO the headlights shall be

turned on or off depending on the ambient light

around the car (acquired by a light sensor with

range 0% … 100%).

[#5] In AUTO mode, to avoid flickering headlights

turning headlights on and off shall be controlled

by means of a hysteresis curve and a debounce

time (see #7 and #8).

[#6] If switch == AUTO when the system starts, the

headlights shall be turned on/off if ambient light

is below/above 70%.

[#7] In AUTO mode, the headlights shall be turned

on if the ambient light around the car falls below

60% for at least 2 seconds.

[#8] In AUTO mode, the headlights shall be turned

off if the ambient light around the car exceeds

70% for at least 3 seconds.

Figure 2: Top-level model of EHLC

The system is developed using model-based

development by means of a MATLAB/Simulink model.

The top-level subsystem of this model is shown in

Figure 2.

To test the EHLC system we start with a simple test

case: The test case lasts for 17 seconds and starts with

the switch in the OFF position. After 2 seconds the

switch is turned to the ON position and remains there

for 10 seconds before being turned back to the OFF

position. TPT uses a graphical state machine notation

to model such a scenario as shown in Figure 3.

Figure 3: First test case OFF-ON-OFF

This simple graphical notation has the same

meaning as the textual description above, but is easier

to interpret for complex test scenarios and provides a

more formal way to describe the procedure. More

formal semantics are needed for test automation. TPT

assigns simple equations to the states and temporal

predicates to the transitions (see Figure 4). Usually

these formulas are hidden behind the graphics.

switch(t) := OFF switch(t) := ON switch(t) := OFF

t >= 2.0 t >= 10.0 t >= 5.0

Figure 4: First test case with formal statements

Each state semantically describes how input signals

of the EHLC system should be stimulated. Signals can

be constants or continuously changing over time. By

means of transitions and their temporal conditions the

behavior of the state machine switches from one state

to the next as soon as the condition is fulfilled. In the

simple test case the conditions depend on time alone.

With these formulas the first test case is almost

complete. The only missing information is how to

define the sensor input. Even if the signal should not

affect the behavior of the SUT, a definition is necessary

in order to verify if the sensor value indeed does not

affect the behavior. It should be noted that the test case

is unique and reproducible only with well-defined

specifications for all system inputs.

The sensor curve is independent from the switch

state, thus it is modeled using a parallel automaton with

just one state, as depicted in Figure 5. The specific

definition describes a signal that is constant at 80%.

For a more realistic scenario a noise component has

been added. The syntax and semantics of the formulas

in this example are not explained in detail here.

sensor(t) := 80 + 4*noise(t/10)

Figure 5: The complete test case

Since all inputs of the SUT are now completely

defined by the test case, it can be executed

deterministically. Note that the test case itself has no

direct dependencies to the EHLC model, to the

software implementation, or to the ECU. The test case

can therefore be executed on arbitrary integration

platforms if the platform is supported by TPT. Many

integrations of TPT already exist on MiL, SiL, PiL, and

HiL level.

Note that in general there are test cases that rely on

a particular platform because they require access to

signals that are not available on all levels.

During the test execution all interface signals are

recorded, i.e. the input signals and the output signal of

the SUT. The corresponding curves can be seen in

Figure 6.

Figure 6: Test data recorded during execution

In the example the test case and the SUT behave as

expected. Since the switch is never in the AUTO

position, the sensor signal does not affect the behavior

of the headlights at all. Headlights are turned on and

off synchronously with the switch state.

Although this example of a test case is simple, it

demonstrates the basic idea of the test language as a

combination of graphical and formal techniques to

describe readable, executable test cases that support

continuous signals independently of execution

platform. For practical usage there are more

sophisticated techniques available such as transition

branches, hierarchical state machines, junctions,

actions at transitions, parameter and calibration data

handling and others which are not in scope of this

paper.

After modeling and executing the first test case we

consider another test case: This time we want to turn

the light to AUTO instead of ON for just 1 second

whereas all other definitions remain unchanged. By

specification the headlights should remain off due to

requirement #8.

After test execution, the curves are similar to the

first test case, except for the headlight signal which

remains constantly at 0.

Both test cases defined so far are almost identical.

Only the switch state and the transition condition in the

second test case are different. Remember that the

reason for defining the second test case was the

requirement #8. Thus, the difference between the two

test cases is related to this requirement because we

must consider the aspect of how headlights behave in

AUTO mode if the ambient light is bright for 1 second.

As a consequence of this consideration, differences

in test cases exist to test different test-relevant

functional aspects of the SUT. In order to test the

functional requirements, it is therefore necessary to

emphasize the differences in test cases. If test cases are

modeled independently from each other, then

comparisons between them are rather difficult. For that

reason, all TPT test cases modeled are integrated into a

single test model that allows sharing of common parts

between test cases and definition of individual parts if

desired.

To illustrate this concept we use the two test cases

introduced above. The integrated test model is shown

in Figure 7. The general structure of both test cases is

identical. The second state ‘turn switch’ and the

transition ‘after …’ have two alternative formal

definitions causing the difference between the two

cases. Elements in the model that have more than one

formal definition are called variation points.

The test model itself is not executable because the

semantics at the variation points are ambiguous.

However, to derive an instance of a test case from this

model it is sufficient to choose one of the two variants

for every variation point. In the example the selection

leads to the two test cases we already introduced above.

sensor(t) := 80 + 4*noise(t/10)

switch(t) := OFF switch(t) := OFF

t >= 2.0 t >= 10.0
t >= 5.0

switch(t) := AUTO

switch(t) := ON

t >= 1.0

Figure 7: The integrated test model

For more realistic test problems usually there are

more than 10 or 20 variation points with many variants.

Thus the combinatorial complexity increases

tremendously to millions of possible combinations. To

keep such large models comprehensible, TPT utilizes

the idea of the classification tree method [1, 4].

In the context of TPT the classifications in a

classification tree represent the variation points,

whereas the classes represent the corresponding

variants. The combination table contains the definition

of all selected test cases. Each line in the table specifies

the selected variants by means of placing a mark on the

line where it crosses the selected variant. The tree that

corresponds to our examples is depicted in Figure 8

below.

Figure 8: Classification tree as an alternative view

The classification tree and the corresponding

combination table can be automatically generated for

each test model. The tree representation is therefore

just an alternative view of the test model that focuses

on the combinatorics whereas the state machine view

focuses on the timing aspect and on the variation

points. Both views can be used in parallel.

The classification tree method has some

sophisticated techniques to express logical constraints

between classes (variants) as well as to express

combinatorial rules describing the desired coverage in

the space of all possible combinations. The

classification tree tool CTE XL automates the

generation of test cases based on these constraints and

rules [4]. For complex test problems this automation is

a crucial factor in reduction of effort.

The complete case study example of the EHLC

controller is too complex to describe here. For a

thorough test the case study defined 72 test cases with

various ambient light signals and switch scenarios.

With these 72 test cases it can be verified if the system

meets all details of the hysteresis and timing

requirements.

7. Practical experience

TPT has been initially developed at Daimler

Software Technology Research and established in

cooperation with many production-vehicle

development projects. It is already in use in many

production-vehicle development projects at car

manufacturers and suppliers. As an example, all current

interior production-vehicle projects at Daimler (which

are all model-based incidentally) use TPT as the central

testing technology for their projects. TPT is used by car

manufacturers and suppliers to specify, exchange and

agree on test models as the basis for acceptance tests.

TPT test cases can run on different platforms

without modification. This fact has been proven in

many projects where hundreds of test cases designed

for MiL tests could be executed in SiL and HiL

environment without any modification. This increases

not only the test efficiency but also the maintenance of

tests since test cases will not become outdated.

The TPT method is scalable. Even for large testing

problems the idea to concentrate all test sequences into

a single test model has been proven to be a good way to

keep even large test sets comprehensible and to support

testers in finding weaknesses within the tests.

8. Summary and outlook

Model-based development caused a radical change

in automotive system development which is still in

progress today. The need to test as early as possible; to

test on multiple integration levels; under real-time

constraints; with functional complexity; provide

interdisciplinary exchangeability; facilitate continuous

signal handling and many others make high demands

on testing procedures, techniques, methods and tools.

TPT is one test approach that facilitates the design,

execution, assessment, and report generation of test

cases for automotive model-based systems. TPT test

cases are portable, i.e. reusable on different test

platforms such as MiL, SiL, or HiL. TPT supports

reactive tests and can be executed in real-time. The

graphical language for test case design is easy to

understand but precise enough for test automation.

However, there is still a long way to a fully

integrated and feature rich testing technique for model-

based testing in the automotive domain. Particularly the

interaction with test management, version and

configuration management, and the issue of product

families is still to be tackled.

Furthermore, model-based testing on integration

levels for automotive systems is a completely unknown

quantity today and has a high potential for

improvement. Central questions such as the

relationship between component architecture and

integration tests, utilization of architectural models as

the basis for integration tests in this area are yet to be

answered.

9. References

[1] M. Grochtmann and K. Grimm. Classification Trees for

Partition Testing. Software Testing, Verification &

Reliability, 3(2):63-82, 1993.

[2] E. Bringmann and A. Krämer. Systematic testing of the

continuous behavior of automotive systems, ICSE2006, in

Proceedings of the 2006 international workshop on Software

engineering for automotive systems, Shanghai, May 2006.

[3] E. Lehmann. Time Partition Testing – Systematischer

Test des kontinuierlichen Verhaltens eingebetteter Systeme,

Ph.D. Thesis, Technical University of Berlin, 2003.

[4] E. Lehmann and J. Wegener. Test Case Design by Means

of the CTE XL. In 8th European International Conference

on Software Testing, Analysis, and Review (EuroSTAR),

Copenhagen, 2000.

[5] B. Lu, X. Wu, H. Figueroa, and A. Monti. A low cost

realtime hardware-in-the-loop testing approach of power

electronics controls. IEEE Transactions on Industrial

Electronics, 54(2):919-931, April 2007.

[6] O. Maler, Z. Manna, and A. Pnueli. From Timed to

Hybrid Systems. In RealTime: Theory in Practice. LNCS,

pages 447-484. Springer Verlag, 1992.

[7] H. Sthamer, J. Wegener, and A. Baresel. Using

Evolutionary Testing to improve Efficiency and Quality in

Software Testing. In Proc. of the 2nd Asia-Pacific

Conference on Software Testing Analysis & Review.

Melbourne, 2002.

[8] X. Wu, S. Lentijo, and A. Monti. A novel interface for

power-hardware-in-the-loop simulation. In IEEE Workshop

on Computers in Power Electronics, 2004.

[9] D. Lee and M. Yannakakis. Principles and methods of

testing finite state machines: A survey. Proceedings of the

IEEE, 1996.

