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Abstract 
 

In recent years the development of automotive 

embedded devices has changed from an electrical and 

mechanical engineering discipline to a combination of 

software and electrical/mechanical engineering. The 

effects of this change on development processes, 

methods, and tools as well as on required engineering 

skills were very significant and are still ongoing today. 

At present there is a new trend in the automotive 

industry towards model-based development. Software 

components are no longer handwritten in C or 

Assembler code but modeled with 

MATLAB/Simulink™, Statemate, or similar tools. 

However, quality assurance of model-based 

developments, especially testing, is still poorly 

supported. Many development projects require 

creation of expensive proprietary testing solutions. 

In this paper we discuss the characteristics of 

automotive model-based development processes, the 

consequences for test development and the need to 

reconsider testing procedures in practice. 

Furthermore, we introduce the test tool “TPT” which 

masters the complexity of model-based testing in the 

automotive domain. To illustrate this statement we 

present a small automotive case study.  

TPT is based on graphical test models that are not 

only easy to understand but also powerful enough to 

express very complex, fully automated closed loop tests 

in real-time. TPT has been initially developed by 

Daimler Software Technology Research. It is already 

in use in many production-vehicle development 

projects at car manufacturers and suppliers. 

 

1. Motivation 
 

Within only a few years the share of software 

controlled innovations in the automotive industry has 

increased from 20 percent to 80 percent, and is still 

growing. Forecasts claim that software will determine 

more than 90% of the functionality of automotive 

systems within the next decade. Consequently the 

impact of software on the customer and hence on 

market shares and competition will be enormous. This 

establishes software as a key technology in the 

automotive domain. 

During recent years the growth of software in the 

automotive industry led to a development process 

founded on model based technologies which have 

many advantages for automotive developments. Firstly 

model-based technologies such as MATLAB/Simulink, 

Statemate, MatrixX, or LabView are domain specific 

and support powerful mechanisms for handling and 

processing continuous signals and events which are the 

most important data types in the automotive domain. 

These model-based technologies allow the 

development of high-level models that can be used for 

simulation in very early stages of the development 

process. This in turn is important since automotive 

development is an interdisciplinary business with 

software, electrical, and mechanical engineering 

aspects inextricably entwined. Graphical models and 

simulation of such models allows engineers to find a 

common functional understanding early in the design 

phase. So, model-based development improves 

communication within development teams, with 

customers, or between car manufacturers and suppliers. 

It reduces time to market through component re-use 

and reduces costs by validating systems and software 

designs up front prior to implementation. Consequently 

models are often treated as part of the requirements 

specification, since the models illustrate the required 

functionality in an executable manner. Model-based 

development provides a development process from 

requirements to code, ensuring that the implemented 

systems are complete and behave as expected. Model-

based development allows segregation of concerns; 

technical aspects such as fixed-point scaling (i.e. the 

transformation of floating-point algorithms to fixed-

point computations), calibration data management, and 

the representation of signals in memory are separated 

from the core algorithms thereby keeping the models as 

lean as possible. 



2. Model-based testing in practice 
 

Along with the growing functionality and the 

introduction of model-based development processes, 

the demands on quality assurance have also increased. 

In terms of testing, model-based development enables 

system engineers to test the system in a virtual 

environment when they are inexpensive to fix, i.e. 

before the code is actually implemented or integrated 

on the final hardware (which is called ECU or 

electronic control unit). However, in practice there are 

just a few testing procedures that address the 

automotive domain-specific requirements of model-

based testing sufficiently. The applied test methods and 

tools are often proprietary, ineffective and require 

significant effort and money. About 15 years ago 

testing embedded devices comprised primarily of four 

well-understood areas: (1) electromagnetic 

compatibility (EMC tests), (2) electrical tests (e.g. 

short-circuit, creeping current, stress peaks), (3) 

environmental tests (i.e. testing under extreme climate 

conditions), and (4) field tests (on proving ground or 

the road). There was no need for dedicated functional 

testing methods because the functional complexity was 

comparatively low. With the increasing popularity of 

model-based development the engineering discipline of 

automotive model-based testing has been neglected for 

a long time. With the promise of model-based 

development to prove concepts at early development 

stages by means of executable models it was assumed 

that testing those models and the derived code is less 

important and therefore would not require new 

techniques. 

 

 

3. Requirements for automotive MBT 
 

The term ‘model-based testing’ is widely used today 

with slightly different meanings. In the automotive 

industry it is normally used to describe all testing 

activities in the context of model-based development 

projects.  

Automotive model-based development has specific 

characteristics that require the use of dedicated model-

based testing approaches. The characteristics of, and 

the resulting requirements for model-based testing are 

discussed below. 

 

3.1 Test automation 

  
Automotive systems usually interact with a real-

world environment which is under continual control of 

the embedded system. Thus the whole system is not 

only a piece of software, but a complex construction 

that consists of software, hardware, electrical, 

mechanical, and/or hydraulic parts. The development 

of such a system requires the co-design of software and 

hardware components. Consequently an iterative 

process is needed with a considerable number of 

interim releases of the integrated system. Thoroughly 

testing these interim releases is crucial to ensure that 

requirements inconsistencies and design or 

implementation faults can be uncovered as early as 

possible. This means that the same tests have to be 

repeated again and again over the development cycle. 

Test automation is therefore essential as the manual test 

workload over many iterations would be at best 

expensive and likely not practical, leading to less than 

thorough quality assurance standards. 

Test automation also simplifies the coordination 

between car manufacturers and suppliers during 

development. Every ECU sample delivered by the 

supplier during development must fulfill at least a 

predefined acceptance test before being integrated in a 

new car setup. Finally, testing automotive systems 

often requires test scenarios with a very precise 

sequence of time-sensitive actions, especially for 

power-train and chassis systems (in the range of µ-sec). 

The only way to execute such scenarios is automation. 

 

3.2 Portability between integration levels 
 

One major benefit of model-based development is 

the possibility to “do things as early as possible”. In 

terms of testing this means to test the functionality in 

the model before the software is implemented and 

integrated into the final ECU. Between the initial 

modeling and the integration into the  ECU there are 

intermediate integration levels described below. Since 

the functionality of the system should remain constant 

and independent of the integration level, relevant test 

cases should also be constant throughout the 

integration and implementation.  

In order to maximize reuse, a test procedure for 

model-based developments should support the 

portability or reuse of test cases between the various 

platforms. On the one hand this reduces the effort of 

test case design tremendously and, on the other hand, 

allows for easy comparison of test results between the 

different integration levels which may be tested on 

different systems. In addition sharing test cases 

between different levels also means that test cases can 

be expressed in a common notation. Test cases can be 

corrected or extended in a central test model without 

the need to adjust a lot of different test 

implementations for the different integration levels. 



Although this requirement sounds trivial from a 

theoretical point of view it is a weak point in today’s 

testing practice for model-based development because 

test procedures and test languages are usually 

specialized for one particular test platform and are very 

difficult to share with other test platforms. 

In general, the following integration levels are 

distinguished: 

Model-in-the-Loop (MiL): The first integration level 

is based on the model of the system itself. Testing an 

embedded system on MiL level means that the model 

and its environment are simulated (interpreted) in the 

modeling framework without any physical hardware 

components. This allows testing at early stages of the 

development cycle. In most automotive model-based 

development projects there are different kinds of 

models. Functional models (aka physical models) are 

rather abstract and do not consider all aspects such as 

robustness and performance. In the course of the 

development physical models are transformed into 

implementation models. These models are designed to 

meet the requirements from a software engineering 

point of view. Aspects such as encapsulation, 

abstraction, robustness, performance, fixed-point 

scaling, and reuse are treated in implementation 

models. Implementation models are often used together 

with a code generator to automatically derive 

production code from the system models. 

Both physical and implementation models can be 

tested. Physical models are tested on a system level 

(system test). When testing implementation models for 

complex systems it makes sense to distinguish between 

module tests (testing subsystems of the model that 

handle particular functional areas) and system tests. 

Software-in-the-Loop (SiL): Testing an embedded 

system on SiL level means that the embedded software 

is tested within a simulated environment model but 

without any hardware (i.e. no mechanical or hydraulic 

components, no sensors, actuators). Usually the 

embedded software and the simulated environment 

model run on the same machine. Since the environment 

is virtual, a real-time environment is not necessary. 

Usually SiL tests are performed on Windows- or 

Linux-based desktop machines. 

Processor-in-the-Loop (PiL): Embedded controllers 

are integrated in embedded devices with proprietary 

hardware (ECU). Testing on PiL level is similar to SiL 

tests, but the embedded software runs on a target board 

with the target processor or on a target processor 

emulator. Tests on PiL level are important because they 

can reveal faults that are caused by the target compiler 

or by the processor architecture. It is the last 

integration level which allows debugging during tests 

in a cheap and manageable way. Therefore the effort 

spent by PiL testing is worthwhile in almost all cases. 

Hardware-in-the-Loop (HiL): When testing the 

embedded system on HiL level the software runs on the 

final ECU. However the environment around the ECU 

is still a simulated one. ECU and environment interact 

via the digital and analog electrical connectors of the 

ECU. The objective of testing on HiL level is to reveal 

faults in the low-level services of the ECU and in the 

I/O services. Additionally acceptance tests of 

components delivered by the supplier are executed on 

the HiL level because the component itself is the 

integrated ECU. HiL testing requires real-time 

behavior of the environment model to ensure that the 

communication with the ECU is the same as in real 

application. 

Test rig: Testing in a test rig means that the 

embedded software runs on the ECU. The environment 

consists of physical components (electrical, 

mechanical, or hydraulic). Furthermore, a test rig often 

utilizes special equipment for measurements and other 

analysis tools. 

Car: The last integration level is obviously the car 

itself. The final ECU runs in the real car which can 

either be a sample or a car from the production line. 

 

3.3 Systematic test case design 
 

For many reasons automotive model-based 

developments usually consist of complex functionality. 

The systems interact with physical components that 

have a complex behavior which depends on many 

variables. Controlling such components also introduces 

complex controller functionality. Secondly the 

electrical, mechanical, and hydraulic components can 

fail and the embedded system has to detect such 

failures and compensate for them in a very robust way, 

as far as technically possible. The implementation of 

code to handle all such failure modes is a significant 

portion of the system software. 

Testing such complex systems requires an astute 

selection of test cases to ensure that all test-relevant 

aspects are covered while redundancies are avoided. A 

test procedure must support this thorough selection 

process by providing a means of keeping an overview 

of the selected test cases, even when there are hundreds 

or thousands of test cases. 

 

3.4 Readability 
 

Automotive model-based testing is a collaborative 

work between testers, system engineers, and 

programmers. All of these experts have different 



perspectives on the system, different skills and 

experiences, and provide important information for the 

identification of suitable test cases: system engineers 

know about the possible pitfalls of the application 

domain, programmers know about the complexity of 

algorithms and their risk of faults, and testers know 

about coverage and combination issues, boundary tests, 

robustness tests and others methods that have to be 

considered in the test implementation.  

The principle of model-based development is to use 

models as a “common language” comprehensible to all 

engineers involved in the development. Hence model-

based testing should be readable and comprehensible 

by all of these experts too and not just by a few testing 

specialists. 

 

3.5 Reactive testing / Closed loop testing 
 

When testing model-based developments, test cases 

are often dependent on the system behavior. That is, 

the execution of a test case depends on what the system 

under test is doing while being tested. In this sense the 

system under test and the test driver run in a closed 

loop.  

A simple example of a reactive test case for an 

engine control is the following scenario: The test case 

should simulate a sensor failure at the moment when 

the revs per minute of the engine exceed a certain 

critical value. In this case there is no fixed point in time 

at which the system is known to exceed the critical rpm 

value because this event is related to many parameters 

through a complex relationship. To model the test case 

in a natural way we must be able to express the 

dependency from the system. 

Existing testing approaches support such reactive 

testing by means of scripting languages. Although these 

languages are powerful enough for reactive tests they 

are rather low-level concepts so that it is often difficult 

to easily understand such test cases. 

 

3.6 Real-time issues and continuous signals 
 

As mentioned previously, testing on the HiL level or 

on test rigs requires the environment and the test cases 

to run in real-time. Conventional test approaches rarely 

satisfy this requirement. Instead they run test scripts on 

a non-real-time machine and interact with the system 

under test without a precise timing environment. 

However, real-time behavior is an important 

requirement to guarantee reproducible test cases. 

Without real-time there may be jitters in the 

communication – especially between continuously 

changing signals. Even slight deviations in the timing 

behavior at the interfaces can have a huge impact on 

the system behavior, with consequences for traceability 

and reproducibility. 

In addition, there are test cases where the timing 

constraints are crucial for the systems functionality, for 

example in engine controls. In such systems many tests 

are impossible to perform without the real-time 

certainty of the test behavior. 

 

3.7 Testing with continuous signals 
 

Automotive control systems have a fairly complex 

functional behavior with complex interfaces and deal 

with continuously changing signals as input and output 

entities. Testing systems with continuous signals is 

poorly supported by conventional test methods. 

Existing methods are data-driven and have no means of 

expressing continuous signals and continuous timing 

issues. As a consequence of this methodical gap, the 

test of automotive systems in practice focuses on 

simple data tables to describe input signals or on script 

languages, such as Visual Basic, Python or Perl, to 

automate tests. Nevertheless, signals are still very 

difficult to handle in these languages. 

 

4. TPT for automotive model-based testing 
 

All of the requirements mentioned above must be 

considered when testing model-based developments in 

the automotive domain. As mentioned previously, most 

of the testing technologies lack support for the desired 

features. This leads to development of many 

proprietary testing solutions that focus on the testing 

problems of individual model-based development 

projects but do not address the overarching challenge. 

Our new approach – which is called Time Partition 

Testing (abbreviated as TPT) – has been specifically 

designed to bridge this gap for model-based automotive 

testing. The objective of TPT is  

 

1. to support a test modeling technique that allows 

the systematic selection of test cases,  

2. to facilitate a precise, formal, portable, but simple 

representation of test cases for model-based 

automotive developments, and thereby 

3. to provide an infrastructure for automated test 

execution and automated test assessments even 

for real-time environments. This is important for 

hardware-in-the-loop tests, for example. 

 

As a general design principle, TPT test cases are 

independent of the underlying software architecture 

and technology of the SUT and the test platform. This 



enables test cases to be easily reused on different test 

platforms, such as MiL, SiL or HiL environments. This 

is not only a big step towards efficient testing, but also 

supports the direct comparison of test results for a test 

case that has been executed on multiple integration 

levels (i.e., back-to-back testing). 

The TPT test method is strongly associated with a 

corresponding test language. An objective of the TPT 

test method is to support the systematic selection of 

relevant test cases. A language is therefore necessary to 

describe these selected cases in a comprehensible 

manner. The test language in turn affects the way test 

cases are modeled, compared, and selected. Therefore 

the language also affects the test method. Due to this 

strong relationship between method and language we 

will discuss both aspects in this section together. 

The systematic, well-directed and well-considered 

selection of test cases is crucial for improving the test 

efficiency. Redundancies and missing test relevant 

scenarios can only be identified by viewing the set of 

test cases as a whole. Consequently a test method and a 

test language must always answer two questions: 

 

1. How can a single test case be described using the 

test language? 

2. How does the test method support the selection of 

the whole set of test cases for a SUT? In other 

words, how does it contribute to the avoidance of 

redundancies between test cases and to the 

identification of missing test cases? 

 

Amazingly existing test approaches that support 

automated tests usually avoid the second question and 

only provide sophisticated languages which allow the 

definition of complex, fully automated test scenarios. 

TPT tries to go one step further. TPT provides a 

language for modeling executable tests for automotive 

systems together with a systematic test case selection 

procedure embedded into the test modeling concept. 

 

 

5. Test process using TPT 
 

The unique feature of the Time Partition Testing is 

the way test cases for continuous behavior are modeled 

and systematically selected during the test case design 

activity. Nonetheless, TPT goes far beyond this 

activity. The overall testing process of TPT is defined 

as presented in Figure 1 and explained in the following. 

 

Test Case 

Design

Compilation

Test

Execution

Test

Assessment

Report

Generation

Require-

ments

Test

Report

platform  independent

platform  dependent

Tester

Figure 1: TPT test process 

5.1 Test case design 
 

During test case design, test cases are selected and 

modeled by means of the graphical test modeling 

language described in the next section. The basis of this 

test case design is the functional system requirements. 

So tests modeled with TPT are black-box tests. 

 

5.2 Compiling 
 

Test cases are compiled into highly compacted byte 

code representations that can be executed by a 

dedicated virtual machine, called the TPT-VM. The 

byte code has been specifically designed for TPT and 

contains exactly the set of operations, data types, and 

structures that are required to automate TPT tests. This 

concept ensures that test cases as well as the TPT-VM 

have a very small footprint. This is important in test 

environments with limited memory and CPU resources, 

such as PiL and HiL. 

Additionally all assessment properties that describe 

the expected results of the SUT are compiled into 

integrated assessment scripts. For each test case there is 

one byte code representation and one assessment script. 

 

5.3 Test execution 
 

During test execution the virtual machine (TPT-

VM) executes the byte code of the test cases. The TPT 

VM communicates continually with the SUT via 

platform adapters. The platform adapter is also 

responsible for recording all signals during the test run. 

Due to the clear separation between test modeling and 

test execution, tests can run on different platforms such 

as MiL, SiL, PiL, and HiL environments. HiL 

environments (which usually run in real-time) can be 

automated with TPT tests because the TPT-VM is able 

to run in real-time too. The clear and abstract semantic 

model of TPT test cases allows the test execution on 

almost every test environment provided that a 

corresponding platform adapter exists. 

 



5.4 Test assessment 
 

The recorded test data is initially just raw signal 

data without any evaluation of whether the behavior of 

the SUT was as expected or not. This data is then 

automatically assessed by means of the compiled 

assessment scripts. Since test assessments are 

performed off-line, real-time constraints are irrelevant. 

Currently TPT uses Python as the script language so 

that an existing Python interpreter can be used as the 

runtime engine. A powerful library has been provided 

to simplify signal handling, signal observation and 

signal manipulation. However, TPT does not rely on 

the actual scripting language or on the interpreter. 

 

5.5 Report generation 
 

A report is generated from the results of the test 

assessment. It depicts the result of the test case in a 

human-readable format. For this purpose the report 

contains the test result (with one of the verdicts 

passed/success, failed, or unknown), curves of relevant 

signals, data tables as well as customizable comments 

that illustrate the evaluated results. 

TPT supports all major test activities and automates 

as many of these steps as possible. Other activities such 

as test management, test coverage measurement, data 

logging, diagnosis handling and others are not covered 

by TPT. However, integration with many of-the-shelf 

management tools such as HP Quality Center, 

Telelogic Doors do exist or are currently under 

development. 

 

6. Case study explaining TPT 
 

The TPT test language is best explained by means 

of a case study which is a simplified version of an 

exterior headlight controller (EHLC) of an existing 

production-vehicle ECU. 

An outline of the specification can be stated as 

follows: 

 

[#1] There is a switch with three states: ON, OFF, 

and AUTO.  

[#2] When switch == ON the headlights shall be 

turned on. 

[#3] When switch == OFF the headlights shall be 

turned off. 

[#4] When switch == AUTO the headlights shall be 

turned on or off depending on the ambient light 

around the car (acquired by a light sensor with 

range 0% … 100%). 

[#5] In AUTO mode, to avoid flickering headlights 

turning headlights on and off shall be controlled 

by means of a hysteresis curve and a debounce 

time (see #7 and #8). 

[#6] If switch == AUTO when the system starts, the 

headlights shall be turned on/off if ambient light 

is below/above 70%. 

[#7] In AUTO mode, the headlights shall be turned 

on if the ambient light around the car falls below 

60% for at least 2 seconds. 

[#8] In AUTO mode, the headlights shall be turned 

off if the ambient light around the car exceeds 

70% for at least 3 seconds. 

 

 

 

Figure 2: Top-level model of EHLC 

 

The system is developed using model-based 

development by means of a MATLAB/Simulink model. 

The top-level subsystem of this model is shown in 

Figure 2. 

To test the EHLC system we start with a simple test 

case: The test case lasts for 17 seconds and starts with 

the switch in the OFF position. After 2 seconds the 

switch is turned to the ON position and remains there 

for 10 seconds before being turned back to the OFF 

position. TPT uses a graphical state machine notation 

to model such a scenario as shown in Figure 3. 

 

 

 

 

Figure 3: First test case OFF-ON-OFF 

 

This simple graphical notation has the same 

meaning as the textual description above, but is easier 

to interpret for complex test scenarios and provides a 

more formal way to describe the procedure. More 

formal semantics are needed for test automation. TPT 

assigns simple equations to the states and temporal 

predicates to the transitions (see Figure 4). Usually 

these formulas are hidden behind the graphics. 



 

switch(t) := OFF switch(t) := ON switch(t) := OFF

t >= 2.0 t >= 10.0 t >= 5.0

 

Figure 4: First test case with formal statements 

Each state semantically describes how input signals 

of the EHLC system should be stimulated. Signals can 

be constants or continuously changing over time. By 

means of transitions and their temporal conditions the 

behavior of the state machine switches from one state 

to the next as soon as the condition is fulfilled. In the 

simple test case the conditions depend on time alone. 

With these formulas the first test case is almost 

complete. The only missing information is how to 

define the sensor input. Even if the signal should not 

affect the behavior of the SUT, a definition is necessary 

in order to verify if the sensor value indeed does not 

affect the behavior. It should be noted that the test case 

is unique and reproducible only with well-defined 

specifications for all system inputs. 

The sensor curve is independent from the switch 

state, thus it is modeled using a parallel automaton with 

just one state, as depicted in Figure 5. The specific 

definition describes a signal that is constant at 80%. 

For a more realistic scenario a noise component has 

been added. The syntax and semantics of the formulas 

in this example are not explained in detail here. 

 

sensor(t) := 80 + 4*noise(t/10)

 

Figure 5: The complete test case 

Since all inputs of the SUT are now completely 

defined by the test case, it can be executed 

deterministically. Note that the test case itself has no 

direct dependencies to the EHLC model, to the 

software implementation, or to the ECU. The test case 

can therefore be executed on arbitrary integration 

platforms if the platform is supported by TPT. Many 

integrations of TPT already exist on MiL, SiL, PiL, and 

HiL level.  

Note that in general there are test cases that rely on 

a particular platform because they require access to 

signals that are not available on all levels.  

During the test execution all interface signals are 

recorded, i.e. the input signals and the output signal of 

the SUT. The corresponding curves can be seen in 

Figure 6. 

 

 

 

 

Figure 6: Test data recorded during execution 

In the example the test case and the SUT behave as 

expected. Since the switch is never in the AUTO 

position, the sensor signal does not affect the behavior 

of the headlights at all. Headlights are turned on and 

off synchronously with the switch state. 

Although this example of a test case is simple, it 

demonstrates the basic idea of the test language as a 

combination of graphical and formal techniques to 

describe readable, executable test cases that support 

continuous signals independently of execution 

platform. For practical usage there are more 

sophisticated techniques available such as transition 

branches, hierarchical state machines, junctions, 

actions at transitions, parameter and calibration data 

handling and others which are not in scope of this 

paper. 

After modeling and executing the first test case we 

consider another test case: This time we want to turn 

the light to AUTO instead of ON for just 1 second 

whereas all other definitions remain unchanged. By 

specification the headlights should remain off due to 

requirement #8. 



After test execution, the curves are similar to the 

first test case, except for the headlight signal which 

remains constantly at 0. 

Both test cases defined so far are almost identical. 

Only the switch state and the transition condition in the 

second test case are different. Remember that the 

reason for defining the second test case was the 

requirement #8. Thus, the difference between the two 

test cases is related to this requirement because we 

must consider the aspect of how headlights behave in 

AUTO mode if the ambient light is bright for 1 second. 

As a consequence of this consideration, differences 

in test cases exist to test different test-relevant 

functional aspects of the SUT. In order to test the 

functional requirements, it is therefore necessary to 

emphasize the differences in test cases. If test cases are 

modeled independently from each other, then 

comparisons between them are rather difficult. For that 

reason, all TPT test cases modeled are integrated into a 

single test model that allows sharing of common parts 

between test cases and definition of individual parts if 

desired. 

To illustrate this concept we use the two test cases 

introduced above. The integrated test model is shown 

in Figure 7. The general structure of both test cases is 

identical. The second state ‘turn switch’ and the 

transition ‘after …’ have two alternative formal 

definitions causing the difference between the two 

cases. Elements in the model that have more than one 

formal definition are called variation points. 

The test model itself is not executable because the 

semantics at the variation points are ambiguous. 

However, to derive an instance of a test case from this 

model it is sufficient to choose one of the two variants 

for every variation point. In the example the selection 

leads to the two test cases we already introduced above. 

sensor(t) := 80 + 4*noise(t/10)

switch(t) := OFF switch(t) := OFF

t >= 2.0 t >= 10.0
t >= 5.0

switch(t) := AUTO

switch(t) := ON

t >= 1.0

 

Figure 7: The integrated test model 

For more realistic test problems usually there are 

more than 10 or 20 variation points with many variants. 

Thus the combinatorial complexity increases 

tremendously to millions of possible combinations. To 

keep such large models comprehensible, TPT utilizes 

the idea of the classification tree method [1, 4]. 

In the context of TPT the classifications in a 

classification tree represent the variation points, 

whereas the classes represent the corresponding 

variants. The combination table contains the definition 

of all selected test cases. Each line in the table specifies 

the selected variants by means of placing a mark on the 

line where it crosses the selected variant. The tree that 

corresponds to our examples is depicted in Figure 8 

below. 

 

Figure 8: Classification tree as an alternative view 

The classification tree and the corresponding 

combination table can be automatically generated for 

each test model. The tree representation is therefore 

just an alternative view of the test model that focuses 

on the combinatorics whereas the state machine view 

focuses on the timing aspect and on the variation 

points. Both views can be used in parallel. 

The classification tree method has some 

sophisticated techniques to express logical constraints 

between classes (variants) as well as to express 

combinatorial rules describing the desired coverage in 

the space of all possible combinations. The 

classification tree tool CTE XL automates the 

generation of test cases based on these constraints and 

rules [4]. For complex test problems this automation is 

a crucial factor in reduction of effort. 

The complete case study example of the EHLC 

controller is too complex to describe here. For a 

thorough test the case study defined 72 test cases with 

various ambient light signals and switch scenarios. 

With these 72 test cases it can be verified if the system 

meets all details of the hysteresis and timing 

requirements. 

 

7. Practical experience 
 

TPT has been initially developed at Daimler 

Software Technology Research and established in 

cooperation with many production-vehicle 

development projects. It is already in use in many 

production-vehicle development projects at car 

manufacturers and suppliers. As an example, all current 



interior production-vehicle projects at Daimler (which 

are all model-based incidentally) use TPT as the central 

testing technology for their projects. TPT is used by car 

manufacturers and suppliers to specify, exchange and 

agree on test models as the basis for acceptance tests. 

TPT test cases can run on different platforms 

without modification. This fact has been proven in 

many projects where hundreds of test cases designed 

for MiL tests could be executed in SiL and HiL 

environment without any modification. This increases 

not only the test efficiency but also the maintenance of 

tests since test cases will not become outdated. 

The TPT method is scalable. Even for large testing 

problems the idea to concentrate all test sequences into 

a single test model has been proven to be a good way to 

keep even large test sets comprehensible and to support 

testers in finding weaknesses within the tests. 

 

8. Summary and outlook 
 

Model-based development caused a radical change 

in automotive system development which is still in 

progress today. The need to test as early as possible; to 

test on multiple integration levels; under real-time 

constraints; with functional complexity; provide 

interdisciplinary exchangeability; facilitate continuous 

signal handling and many others make high demands 

on testing procedures, techniques, methods and tools. 

TPT is one test approach that facilitates the design, 

execution, assessment, and report generation of test 

cases for automotive model-based systems. TPT test 

cases are portable, i.e. reusable on different test 

platforms such as MiL, SiL, or HiL. TPT supports 

reactive tests and can be executed in real-time. The 

graphical language for test case design is easy to 

understand but precise enough for test automation. 

However, there is still a long way to a fully 

integrated and feature rich testing technique for model-

based testing in the automotive domain. Particularly the 

interaction with test management, version and 

configuration management, and the issue of product 

families is still to be tackled.  

Furthermore, model-based testing on integration 

levels for automotive systems is a completely unknown 

quantity today and has a high potential for 

improvement. Central questions such as the 

relationship between component architecture and 

integration tests, utilization of architectural models as 

the basis for integration tests in this area are yet to be 

answered. 
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