
Version 18u3

Due to continuous product development, information in this document is subject to
change without notice.

No part of this user manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system without express written permission from Piketec
GmbH.

TPT Time Partition Testing and TPT logo are registered trademarks of Piketec GmbH.

www.piketec.com

Piketec GmbH / Waldenserstraße 2-4 / 10551 Berlin, Germany / www.piketec.com / info@piketec.com

https://piketec.com/

Table of Contents

1 About this document 4

2 Introduction 5

3 TPT Docker image 9

4 Executable of SUT 10

5 TPT Docker container 11

5.1 Running tests in a Docker container via command line 12

5.2 Running TPT in a Docker container via API server 13

3TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

4TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

1 About this document

To facilitate the reading, the text is formatted as follows:

Formatted text Explanation

FUSION platform, Help
view, Declaration Editor,
Build Progress dialog

places where you can find something in TPT; names of
platforms, views, editors, dialogs, assesslets, step types,
dashboard widgets, and tabs

View|Show View|Content menu path to an item in TPT or to a topic in a PDF manual

<TPT.INSTALLDIR>/
templates

path to files or folders on your computer

Restrict to linked test cases names of text fields, columns, menu items, buttons, or
checkboxes in TPT

Stub header files link to another topic, bookmark, or to a website

TPT.assertAlways source code

TestCase_ON_OFF names of testlets, variants, test cases, assesslets,
requirements and file names in examples

"Throttle Concurrent Builds" places where you can find something in external programs;
names of text fields, sections, columns, menu items,
buttons, or checkboxes in external programs

[Formatting] placeholder for an element in TPT that has no name but
should be explained

The following table describes the attention markers used in this documentation.

This icon indicates a tip.

This icon indicates a warning or restriction.

5TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

2 Introduction

TPT can be run in a Docker container to execute tests. You are free to split the tests using a TPT
API script and run them in several containers of the same image.

You will need:

l Docker (https://docs.docker.com/)
l a headless TPT for Linux-based Docker images, that is a TPT that can only be executed via the

command line
l a TPT project file

A license is required to execute TPT tests with Docker. Adjust the license_default.cfg in
the TPT installation according to your license server data. The license server version must be at
least 11.18.0.

Example of a license_default.cfg for the TPT License Server

IP-Adr=lic.piketec.com

proxyType=<None>

port=30551

user=maxmustermann

password=mu34ma00a

LicenseType=TPTLicenseServer

proxyPort=0

Example of a license_default.cfg for Flex LM

IP-Adr=30551@mylicenseserver.com

LicenseType=FlexLm

Docker cannot be used with a TPT Dongle license.

At the moment, tests on Linux can only be run on the EXE platform in a Docker
container. Windows based images support at least the EXE platform and C/C++
platform.

To help you get started, the TPT installation folder includes several sample files for Linux-based
and Windows- based Docker images that you can adapt to your needs or simply use as
inspiration.

Unpack the Docker package which includes the following folders:

https://docs.docker.com/

6TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

Folder Content

0_Docker_Image l headless TPT installation for Linux-based
Docker images

l Dockerfile: contains all commands to
build a Docker image

l build.bat: batch script to build the
Docker image

l build.sh: shell script to build the Docker
image

1_SUT l example SUT
l make.sh: makes the SUT executable in the

Docker image using dynamic links
l make_static.sh: makes the SUT

executable in the Docker image using static
links

l build_sut_in_docker.bat: batch
script to create a Docker container based
on the Docker image and runs the shell
script to make the SUT executable;
removes the container

l build_sut_in_docker.sh: shell script
to create a Docker container based on the
Docker image and runs the shell script to
make the SUT executable; removes the
container

1_TPT_Example TPT project file with the test cases to be
executed

2_Run_Simple_SUT_w_CLI run_simple_SUT_w_CLI.bat: batch script
to start a Docker container based on the
Docker image, mounts external volumes to
the TPT project file, to a test result directory,
and to the executable SUT; runs the test cases
of the TPT project file and stores the test
results in the results directory, and removes
the container

7TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

Folder Content

run_simple_SUT_w_CLI.sh: shell script to
start a Docker container, s. run_simple_
SUT_w_CLI.bat

3_Run_1_Instance_with_API l docker-compose.yml: creates a Docker
container based on the Docker image,
mounts the needed external volumes, sets
the needed ports for the API commands,
starts TPT.

l run_1_instance_with_API_

compose.bat: executes the docker-
compose.yml

l run_1_instance_with_API.bat: does
the same as docker-compose.yml but
must be executed in a command line

l talk_to_docker.tptapi: API script
with the commands necessary to run tests
in TPT via the TPT API.

4_Run_3_Instances_with_API l docker-compose.yml: creates three
Docker containers based on the Docker
image, mounts the needed external
volumes, sets the needed ports for the API
commands, starts TPT.

l run_3_instances_with_API_

compose.bat: executes the docker-
compose.yml

l run_3_instances_with_API.bat: does
the same as docker-compose.yml but
must be executed in a command line

l talk_to_docker.tptapi: API script
with the commands necessary to run tests
in TPT via the TPT API.

8TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

Folder Content

Docker_C_Platform

(only for Windows available)

l Dockerfile: contains all commands to
build a Windows-based Docker image

l build_testframe.bat: starts TPT and
uses the API script recompile.tptapi in
the folder Scripts to build the test frame
using the C platform

l execute_testcases.bat: executes the
test cases from the example available in
the folder C-Example

9TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

3 TPT Docker image

A Docker image contains the code that is needed to execute software in a Docker container.

PikeTec offers a headless TPT version that is needed to build a Docker image based on Ubuntu
(Linux). To build the Ubuntu-based TPT Docker image, navigate to the directory of your headless
TPT version and place the Docker file next to the folder of the headless TPT version.

To create a Windows based Docker image, create two new folders in 0_Docker_Image_

Windows. Name one of it MinGW and copy your MinGW installation into this folder. Name the
other folder TPT_installation and copy your TPT installation into it.

Example folder: <headless TPT installation>\0_Docker_Image

The folder 0_Docker_Container_Image contains a Docker file that includes all
commands needed to build a Docker image. Run the build script to execute the Docker file
and to build the image.

To create a Windows based Docker image add a MinGW-folder name MinGW and a copy of
a TPT installation in the folder TPT.

Example

10TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

4 Executable of SUT

To run the SUT in Docker, you have to modify the executable file. You need

l the C code to be tested
l a shell script to build the executable inside the Docker container
l and a batch file that creates the Docker container based on a TPT Docker image with the

generated executable SUT and generates the test drivers

For the Linux-based Docker image, a C compiler is installed via Docker package manager,
therefore the scripts can use gcc without changing anything. In the Windows-based image, the
path to the gcc needs to be modified to make the gcc command available.

After the test driver generation is finished, the container can be terminated, thus removed.

Example folder: <headless TPT installation>\1_SUT_Linux

Run the batch file build_sut_in_docker.bat to create a Docker container based on the
Docker image tpt_headless_base and to run the shell script to create an executable file
that can be run in Linux. The container will be automatically removed after its task is
finished.

Example

11TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

5 TPT Docker container

A Docker container is a temporarily running instance of a Docker image. When a Docker
container is closed, it is reset to the state of the underlying image. Any changes made during
the execution are discarded. So, to keep test results even when the container is not active, you
need to mount external volumes.

You must specify for each Docker container which TPT project has to be executed and which
execution configuration should be used. The test cases to be executed are specified in the
execution configuration.

You can execute tests in a Docker container by using an API script or a batch script.

Mount volumes

You should always mount at least the following volumes in your Docker container:

l volume to your SUT
l volume to your TPT project file
l volume to the test results storage

In a batch file, the syntax for mounting the volume to the SUT is as follows:
--mount type=bind,src=<path to the folder with the SUT in

Windows>,dst=<path to a specific folder in Linux>

For example:
--mount type=bind,src=C:\Tools\Examples\Docker\1_SUT_

Linux,dst=/temp/tptdata/sut

In a Docker compose file, this might look like this:
volumes:

- type: bind

source: ${C:\Tools\Examples\Docker\1_SUT_Linux}

target: /temp/tptdata/sut

More about the syntax of Docker files, see https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

12TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

5.1 Running tests in a Docker container via
command line
To run tests via the command line, you must specify which project and which execution
configuration needs to be run. Add the command to the same batch file that you use to create
the Docker container.

Such a batch file might look light this:

Figure 5-1: Example of a batch file for creating Docker container

Example folder: <headless TPT installation>\2_Run_Simple_SUT_w_CLI

Run the batch file run_simple_SUT_w_CLI.bat to create a Docker container based on
the Docker image. The external volumes are mounted, so the Docker container has access
to the TPT project file, to the executable SUT, and to a test result directory. The test cases
of the execution configuration named exeConfig are executed with TPT. After the test
results have been stored in the specified directory, the container will be removed.

Example

13TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

5.2 Running TPT in a Docker container via API
server
You can communicate with the TPT that is running in the Docker container from outside by
using TPT-specific API commands. To do this, you must run the API server in the TPT Docker
container and specify a port on which to pass the API commands from outside. You need to
map the network port of your physical network card to a port of Docker's internal network, for
example. -p 1100:1099, meaning [host_port]:[docker_internal_image_port].

In addition, you must define an answer port for the communication. With the environment
variable TPT_RMI_PORT, you can specify the answer port to be used by TPT, for example --

env TPT_RMI_PORT=40243 . The port must also be mapped to an open port via -p , for
example -p 40243:40243 --env TPT_RMI_PORT=40243.

To load the TPT API server, start TPT with the following arguments: --apiPort [docker_
image_port_for_TPT_API] --apiBindingName TptApi --run apiserver --

headless.

The apiPort and apiBindingName can also be specified in the apiserver.xml file (see
headless TPT folder: 0_ Docker_ Container/TPT/tpt.config.dir/apiserver.xml).
When you start the API server via the command line with an apiPort and an
apiBindingName that differs from the specification in your apiserver.xml file, the
command line specification wins.

Send API commands via an API script to a Docker container

To pass TPT API commands to a TPT in a Docker container, you can either use a custom Java
program or an API script. You can create and maintain this script in a normal TPT using the
API Script Editor, or use a text editor and save the file as *.tptapi.

It is essential to specify the following in the API script file:

l directory to the TPT API script
l a host variable, for example HOST = "localhost"

l a binding, for example BINDING = "TptApi"; the binding name is specified when you start
the Docker container using the argument --apiBindingName

To send the API commands to TPT, open the API script in a normal TPT, adjust the path to the
TPT project you like to run. Then, click Run.

14TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

Figure 5-2: API script in the 'API Script Editor' of TPT

You can also run API scripts directly in the TPT Docker container, for example: /tpt/tpt_
linux --run apiserver my_api_script.tptapi --headless . The apiPort and
apiBindingName can be omitted in this case, since the communication takes place within the
TPT Docker container and the API script terminates automatically when it is finished.

Example folder: <headless TPT installation>\3_Run_1_Instance_with_API

Check the volumes to be mounted and the port forwarding specified in the docker-
compose.yml and the run_1_instance_with_API.bat.

Run the batch file run_1_instance_with_API_compose.bat to execute the services
specified in the YAML file docker-compose.yml. A Docker image will be created based on
the existing Docker image tpt_headless_base, the necessary external volumes are
mounted, the ports are forwarded, and the TPT headless image is started in the Docker
container.

Instead of run_1_instance_with_API_compose.bat, you can run run_1_instance_
with_API.bat. The execution of this file leads to the same results as the execution of the
run_1_instance_with_API_compose.bat but does not make use of the docker-
compose.yml.

Example: Run test in one Docker container with API

15TPT 18u3 | Running TPT in Docker | 2023 | www.piketec.com

When the Docker container is running, open the TPTAPI script file talk_to_
docker.tptapi in the API Script Editor in the TPT user interface, and run the API script.

Example: Run test in one Docker container with API (continued)

If you want to distribute test cases to multiple Docker containers, you only need to create
multiple Docker containers based on the TPT Docker image.

To communicate with the containers via the TPT API, set a different port share and port
forwarding for each container. Adjust the value of the TPT_RMI_PORT environment variable
accordingly, for example:

docker run -dit --network=bridge --name tpt1 -p 1100:1099 -p

40243:40243 --env TPT_RMI_PORT=40243
[...]
docker run -dit --network=bridge --name tpt2 -p 1101:1099 -p

40244:40244 --env TPT_RMI_PORT=40244
[...]
docker run -dit --network=bridge --name tpt3 -p 1102:1099 -p

40245:40245 --env TPT_RMI_PORT=40245

Make sure to use different test results directories for each Docker container. A test report will
be generated for each Docker container.

You can specify in the API script that certain test sets are executed in specific Docker containers,
but you can also split test cases of a test set numerically. For more information about the TPT
API, see TPT API.

Example folder: <headless TPT installation>\4_Run_3_Instances_with_API

Check the ports of all three Docker containers and add a different results path to each of
them. The execution is as described in Example: Run test in one Docker container with API

Example: Run test in three Docker containers with API

../../../../../Content/Programming APIs/TPT API/TPT API.htm

	 1 About this document
	 2 Introduction
	 3 TPT Docker image
	 4 Executable of SUT
	 5 TPT Docker container
	 5.1 Running tests in a Docker container via command line
	 5.2 Running TPT in a Docker container via API server

