
Version 19u2

Due to continuous product development, information in this document is subject to
change without notice.

No part of this user manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system without express written permission from Piketec
GmbH.

TPT Time Partition Testing and TPT logo are registered trademarks of Piketec GmbH.

www.piketec.com

Piketec GmbH / Waldenserstraße 2-4 / 10551 Berlin, Germany / www.piketec.com / info@piketec.com

https://piketec.com/

Table of Contents

1 Introduction 4

2 TPT Docker image 8

3 TPT Docker container 10

4 Configure and run tests via the TPT API 12

5 Run tests via command line 15

3TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

4TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

1 Introduction

TPT can be run in a Docker container to execute tests. You are free to split the tests using a TPT
API script and run them in several containers of the same image.

You will need:

l Docker (https://docs.docker.com/)
l a headless TPT for Linux-based Docker images, that is a TPT that can only be executed via the

command line, or a normal TPT if you like to run TPT from a Windows-based Docker image;
you can find TPT headless on the TPT download page

l a TPT FlexLM license; this is the same license file as for the "normal" TPT. You need to adjust
the license_default.cfg in the TPT installation according to your license server data.
The license server version must be at least 11.18.0.

l a TPT project file

#Example of a license_default.cfg for the TPT License Server
IP-Adr=lic.piketec.com

proxyType=<None>

port=30551

user=maxmustermann

password=mu34ma00a

LicenseType=TPTLicenseServer

proxyPort=0

Example of a license_default.cfg for Flex LM
IP-Adr=30551@mylicenseserver.com

LicenseType=FlexLm

Docker cannot be used with a TPT Dongle license.

At the moment, tests on Linux can only be run on the EXE platform and the
MATLAB/Simulink platform in a Docker container. Windows based containers support
at least the EXE platform and C/C++ platform.

To help you get started, the TPT installation folder includes several sample files for Linux-based
and Windows- based Docker images that you can adapt to your needs or simply use as
inspiration. Unpack the Docker package which includes the following folders:

0_Docker_Image
l License folder (Linux only): contains a dummy license; add your TPT license into this

folder and name it tptheadless.lic

https://docs.docker.com/

5TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

l TPT folder (Linux only): contains the headless TPT installation for Linux-based Docker
images

l Dockerfile: contains all commands to build a Docker image
l build.bat: batch script to build the Docker image
l build.sh: shell script to build the Docker image

1_SUT
l lights_control_no_scaling.c and lights_control_no_scaling.h: example

SUT
l TPT_lights_control_no_scaling.c: code to connect the SUT with TPT
l TPT_TestDriver.c, TPT_TestDriver.h: test driver for executing the tests
l make.sh: makes the SUT executable in the Docker image using dynamic links
l make_static.sh: makes the SUT executable in the Docker image using static links
l build_sut_in_docker.bat: batch script to create a Docker container based on the

Docker image and runs the shell script to make the SUT executable; removes the container
l build_sut_in_docker.sh: shell script to create a Docker container based on the

Docker image and runs the shell script to make the SUT executable; removes the container

1_TPT_Example
TPT project file with the test cases to be executed.

2_Run_Simple_SUT_w_CLI
l run_simple_SUT_w_CLI.bat: batch script to start a Docker container based on the

Docker image, mounts external volumes to the TPT project file, to a test result directory,
and to the executable SUT; runs the test cases of the TPT project file and stores the test
results in the results directory, and removes the container

l run_simple_SUT_w_CLI.sh: shell script to start a Docker container, s. run_simple_
SUT_w_CLI.bat

3_Run_1_Instance_with_API

l docker-compose.yml: creates a Docker container based on the Docker image, mounts
the needed external volumes, sets the needed ports for the API commands, starts TPT.

l run_1_instance_with_API_compose.bat: executes the docker-compose.yml
l run_1_instance_with_API.bat: does the same as docker-compose.yml but must

be executed in a command line
l talk_to_docker.tptapi: API script with the commands necessary to run tests in TPT

via the TPT API.

4_Run_3_Instances_with_API
l docker-compose.yml: creates three Docker containers based on the Docker image,

mounts the needed external volumes, sets the needed ports for the API commands, starts

6TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

TPT.
l run_3_instances_with_API_compose.bat: executes the docker-compose.yml
l run_3_instances_with_API.bat: does the same as docker-compose.yml but

must be executed in a command line
l talk_to_docker.tptapi: API script with the commands necessary to run tests in TPT

via the TPT API.

Docker_C_Platform
(only for Windows available)

l C-Example folder: contains the TPT example
l Scripts folder: contains the TPT API script for recompiling
l build.bat: creates an Docker image based on the Dockerfile
l Dockerfile: contains all commands to build a Windows-based Docker image
l execute_testcases.bat: executes the test cases from the example available in the

folder C-Example
l rebuild_testframe.bat: starts TPT and uses the API script recompile.tptapi in

the folder Scripts to build the test frame using the C platform

Docker_Matlab_Platform
(only for Linux available)

l Config folder: contains the file matlab.xml which specifies the MATLAB version for
TPT; by default this version is set to 9.12; change the version when you install a
"mathworks/matlab image" different than R2022a

l Launcher folder: contains the launcher settings for the TPT API Server
l License folder: contains a dummy license; add your TPT license into this folder and name

it tptheadless.lic
l Dockerfile: contains all commands to build a Linux-based Docker image
l build.bat: executes the Dockerfile to build the Docker image
l run.bat: creates a Docker container based on the new Docker image and creates folders

for exchanging test data between Windows and Ubuntu; sets the TPT API port. Once the
container is running, your default webbrowser opens with "noVNC"; click "connect" to
load the launchers for the TPT API Server and MATLAB R2022a.

7TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

Figure 1-1: Screen with the launchers for TPT API Server and MATLAB R2022a Server

Double-click at TPT API Server to start the server for communicating with TPT in Docker.
Double-click on MATLAB R2022a and log-in with your MATLAB log-in data. Then, install the
Simulink add-on.

Limitations when running tests using the MATLAB/Simulink platform on Linux-
based TPT Docker images:

l only 64-bit MATLAB versions are supported
l only the GCC compiler is supported
l multi-byte uft-8 characters in paths to test data are not supported
l generation of FUSION DLL and dashboard executable are not supported

8TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

2 TPT Docker image

A Docker image contains the code that is needed to execute software in a Docker container. The
images can be based on Ubuntu or Windows operating systems.

Ubuntu-based Docker image

PikeTec offers a headless TPT version that is needed to build a Docker image based on Ubuntu
(Linux). To create a Ubuntu-based Docker image, it is recommend to just modify the example in
the headless package. A working TPT is contained within the headless package in the subfolder
Linux\0_Docker_Image\TPT.

To create the example Docker image, copy a valid TPT Flexlm license file and paste into the
Linux\0_Docker_Image\License folder; rename the license file to tptheadless.lic.

Instead of renaming the license file, you could also edit the value of the attribute
flexlmfile in the license_default.cfg file.

Run build.bat in the subfolder Linux\0_Docker_Image to create a TPT image name "tpt_
image".

Using external tools like C compilers
When you want to use tools like C compilers with TPT, add these external tools or install
them; please read the Docker documentation on how to do this.

Windows-based Docker image

To create a Windows-based Docker image, create a Docker file including the commands to build
a Docker image. Additionally, create a batch file that will start the building of the Docker image
based on your commands in the Docker image, for example docker build -t tpt_image.

Preparations
Before starting the Docker image creation, place the following files next to the Docker file:

l TPT installation folder
The folder contains the TPT to be executed in Docker.
Do not use the headless package because this is for Linux-based systems only.

When you want to try out the "Docker_C_Platform example", you can just
manually copy and the Setup.exe of your regular TPT and paste it next to the
Docker file. The Docker file needs to be adjusted, see README.txt in the example
folder.

9TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

l TPT license configuration file
Copy the file named license_default.cfg from tpt-headless/Linux/0_Docker_

Image/TPT and enter the appropriate values, see #Example of a license_default.cfg for the
TPT License Server.

l TPT license file
The license file is necessary to run TPT; its name ends in .lic. After you placed the license
file next to the Docker file, open the Docker file and enter the following line at the end: COPY
<license_file_name>.lic C:/TPT/<license_file_name>.lic.

Create the Docker image
Open a command line in this folder and execute build.bat to create the Docker image
named "tpt_image".

Using external tools like C compilers
When you want to use tools like C compilers with TPT, add these external tools to Docker;
please read the Docker documentation on how to do this. Adjustments in the Docker file and
copies of the external tool could be necessary.

If you create a Docker image based on the copy of a TPT installation, just run TPT before
creating the Docker image and set the compilers in the TPT Tool Preference, see
Option|Preferences|General . The specifications are saved in the file tpt.config and in
plug-in specific XML files that can be found in the config folder. The file tpt.config and
the folder config can be found inC:/Users/<your name>/AppData/Local/TPT/<TPT

installation name> on your computer. Copy the file tpt.config and the folder
config manually and paste both side by side into the copied TPT installation folder. Next,
rename the config folder to tpt.config.dir. You can modify the XML files inside of the
tpt.config.dir. For example, to adjust the path of a MinGW installation, open the file
ccompilers.xml and replace the installation path with the absolute path to the MinGW
installation in Docker.

If you create a Docker image based on a TPT setup like in the example "Docker_C_
Platform_example", you can use the TPT API to set the C compilers after the
Docker image has been created.

10TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

3 TPT Docker container

A Docker container is a temporarily running instance of a Docker image. When a Docker
container is closed, it is reset to the state of the underlying image. Any change made during the
execution is discarded. So, to keep test results even when the container is not active, you need
to mount external volumes.

You must specify for each Docker container which TPT project has to be executed and which
execution configuration should be used. The test cases to be executed are specified in the
execution configuration.

You can execute tests in a Docker container by using an API script or a batch script.

Mount volumes

You should always mount at least the following volumes in your Docker container:

l volume to your SUT
l volume to your TPT project file
l volume to the test results storage

In a batch file, the syntax for mounting the volume to the SUT is as follows:
--mount type=bind,src=<path to the folder with the SUT in

Windows>,dst=<path to a specific folder in Linux>

For example:
--mount type=bind,src=C:\Tools\Examples\Docker\1_SUT_

Linux,dst=/temp/tptdata/sut

In a Docker compose file, this might look like this:
volumes:

- type: bind

source: ${C:\Tools\Examples\Docker\1_SUT_Linux}

target: /temp/tptdata/sut

More about the syntax of Docker files, see https://docs.docker.com/engine/reference/builder/

Executable of the SUT

To run the SUT in Docker, you have to modify the executable file. You need

l the C code to be tested
l a shell script to build the executable inside the Docker container
l and a batch file that creates the Docker container based on a TPT Docker image with the

generated executable SUT and generates the test drivers

https://docs.docker.com/engine/reference/builder/

11TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

For the Linux-based Docker image, a C compiler is installed via Docker package manager,
therefore the scripts can use gcc without changing anything. In the Windows-based image, the
path to the gcc needs to be modified to make the gcc command available.

After the test driver generation is finished, the container can be terminated, thus removed.

Example folder: <headless TPT installation>\Linux\1_SUT

Run the batch file build_sut_in_docker.bat to create a Docker container based on
the Docker image tpt_image and to run the shell script to create an executable file
that can be run in Linux. The container will be automatically removed after its task is
finished.

Example

12TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

4 Configure and run tests via the TPT API

You can communicate with a TPT running in a Docker container from outside by using TPT-
specific API commands to create tests, configure platforms and so forth. To do this, you must
run the API server in the TPT Docker container and specify a port on which to pass the API
commands from outside. You need to map the network port of your physical network card to a
port of Docker's internal network, for example. -p 1100:1099, meaning [host_port]:

[docker_internal_image_port].

In addition, you must define an answer port for the communication. With the environment
variable TPT_RMI_PORT, you can specify the answer port to be used by TPT, for example, --
env TPT_RMI_PORT=40243. The port must also be mapped to an open port via -p, for
example, -p 40243:40243 --env TPT_RMI_PORT=40243.

To load the TPT API server, start TPT with the following arguments: --apiPort [docker_
image_port_for_TPT_API] --apiBindingName TptApi --run apiserver --

headless.

The apiPort and apiBindingName can also be specified in the apiserver.xml file (see
headless TPT folder: 0_ Docker_ Container/TPT/tpt.config.dir/apiserver.xml).
When you start the API server via the command line with an apiPort and an
apiBindingName that differs from the specification in your apiserver.xml file, the
command line specification wins.

Send API commands via an API script to a Docker container

To pass TPT API commands to a TPT in a Docker container, you can either use a custom Java
program or an API script. You can create and maintain this script in a normal TPT using the
API Script Editor, or use a text editor and save the file as *.tptapi.

It is essential to specify the following in the API script file:

l directory to the TPT API script
l a host variable, for example, HOST = "localhost"

l a binding, for example, BINDING = "TptApi"; the binding name is specified when you
start the Docker container using the argument --apiBindingName

To send the API commands to TPT, open the API script in a normal TPT, adjust the path to the
TPT project you like to run. Then, click Run.

13TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

Figure 4-1: API script in the 'API Script Editor' of TPT

You can also run API scripts directly in the TPT Docker container, for example: /tpt/tpt_
linux --run apiserver my_api_script.tptapi --headless. The apiPort and
apiBindingName can be omitted in this case, since the communication takes place within the
TPT Docker container and the API script terminates automatically when it is finished.

Example folder: <headless TPT installation>\3_Run_1_Instance_with_API

Check the volumes to be mounted and the port forwarding specified in the docker-
compose.yml and the run_1_instance_with_API.bat.

Run the batch file run_1_instance_with_API_compose.bat to execute the
services specified in the YAML file docker-compose.yml. A Docker image will be
created based on the existing Docker image tpt_headless_base, the necessary
external volumes are mounted, the ports are forwarded, and the TPT headless image is
started in the Docker container.

Instead of run_1_instance_with_API_compose.bat, you can run run_1_
instance_with_API.bat. The execution of this file leads to the same results as the
execution of the run_1_instance_with_API_compose.bat but does not make use
of the docker-compose.yml.

When the Docker container is running, open the TPTAPI script file talk_to_
docker.tptapi in the API Script Editor in the TPT user interface, and run the API

Example: Run test in one Docker container with API

14TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

script.

Example: Run test in one Docker container with API (continued)

If you want to distribute test cases to multiple Docker containers, you only need to create
multiple Docker containers based on the TPT Docker image.

To communicate with the containers via the TPT API, set a different port share and port
forwarding for each container. Adjust the value of the TPT_RMI_PORT environment variable
accordingly, for example:

docker run -dit --network=bridge --name tpt1 -p 1100:1099 -p

40243:40243 --env TPT_RMI_PORT=40243
[...]
docker run -dit --network=bridge --name tpt2 -p 1101:1099 -p

40244:40244 --env TPT_RMI_PORT=40244
[...]
docker run -dit --network=bridge --name tpt3 -p 1102:1099 -p

40245:40245 --env TPT_RMI_PORT=40245

Make sure to use different test results directories for each Docker container. A test report will
be generated for each Docker container.

You can specify in the API script that certain test sets are executed in specific Docker containers,
but you can also split test cases of a test set numerically. For more information about the TPT
API, see TPT API.

Example folder: <headless TPT installation>\4_Run_3_Instances_with_
API

Check the ports of all three Docker containers and add a different results path to each
of them. The execution is as described in Example: Run test in one Docker container
with API (continued)

Example: Run test in three Docker containers with API

../../../../../Content/Programming APIs/TPT API/TPT API.htm

15TPT 19u2 | Running TPT in Docker | 2024 | www.piketec.com

5 Run tests via command line

To run tests via the command line, you must specify which project and which execution
configuration needs to be run. Add the command to the same batch file that you use to create
the Docker container.

Such a batch file might look light this:

Figure 5-1: Example of a batch file for creating Docker container

Example folder: <headless TPT installation>\2_Run_Simple_SUT_w_CLI

Run the batch file run_simple_SUT_w_CLI.bat to create a Docker container based
on the Docker image. The external volumes are mounted, so the Docker container has
access to the TPT project file, to the executable SUT, and to a test result directory. The
test cases of the execution configuration named exeConfig are executed with TPT. After
the test results have been stored in the specified directory, the container will be
removed.

Example (Linux)

	 1 Introduction
	 2 TPT Docker image
	 3 TPT Docker container
	 4 Configure and run tests via the TPT API
	 5 Run tests via command line

